| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468 | <?phpdeclare(strict_types = 1);namespace BaconQrCode\Common;use BaconQrCode\Exception\InvalidArgumentException;use BaconQrCode\Exception\RuntimeException;use SplFixedArray;/** * Reed-Solomon codec for 8-bit characters. * * Based on libfec by Phil Karn, KA9Q. */final class ReedSolomonCodec{    /**     * Symbol size in bits.     *     * @var int     */    private $symbolSize;    /**     * Block size in symbols.     *     * @var int     */    private $blockSize;    /**     * First root of RS code generator polynomial, index form.     *     * @var int     */    private $firstRoot;    /**     * Primitive element to generate polynomial roots, index form.     *     * @var int     */    private $primitive;    /**     * Prim-th root of 1, index form.     *     * @var int     */    private $iPrimitive;    /**     * RS code generator polynomial degree (number of roots).     *     * @var int     */    private $numRoots;    /**     * Padding bytes at front of shortened block.     *     * @var int     */    private $padding;    /**     * Log lookup table.     *     * @var SplFixedArray     */    private $alphaTo;    /**     * Anti-Log lookup table.     *     * @var SplFixedArray     */    private $indexOf;    /**     * Generator polynomial.     *     * @var SplFixedArray     */    private $generatorPoly;    /**     * @throws InvalidArgumentException if symbol size ist not between 0 and 8     * @throws InvalidArgumentException if first root is invalid     * @throws InvalidArgumentException if num roots is invalid     * @throws InvalidArgumentException if padding is invalid     * @throws RuntimeException if field generator polynomial is not primitive     */    public function __construct(        int $symbolSize,        int $gfPoly,        int $firstRoot,        int $primitive,        int $numRoots,        int $padding    ) {        if ($symbolSize < 0 || $symbolSize > 8) {            throw new InvalidArgumentException('Symbol size must be between 0 and 8');        }        if ($firstRoot < 0 || $firstRoot >= (1 << $symbolSize)) {            throw new InvalidArgumentException('First root must be between 0 and ' . (1 << $symbolSize));        }        if ($numRoots < 0 || $numRoots >= (1 << $symbolSize)) {            throw new InvalidArgumentException('Num roots must be between 0 and ' . (1 << $symbolSize));        }        if ($padding < 0 || $padding >= ((1 << $symbolSize) - 1 - $numRoots)) {            throw new InvalidArgumentException(                'Padding must be between 0 and ' . ((1 << $symbolSize) - 1 - $numRoots)            );        }        $this->symbolSize = $symbolSize;        $this->blockSize = (1 << $symbolSize) - 1;        $this->padding = $padding;        $this->alphaTo = SplFixedArray::fromArray(array_fill(0, $this->blockSize + 1, 0), false);        $this->indexOf = SplFixedArray::fromArray(array_fill(0, $this->blockSize + 1, 0), false);        // Generate galous field lookup table        $this->indexOf[0] = $this->blockSize;        $this->alphaTo[$this->blockSize] = 0;        $sr = 1;        for ($i = 0; $i < $this->blockSize; ++$i) {            $this->indexOf[$sr] = $i;            $this->alphaTo[$i]  = $sr;            $sr <<= 1;            if ($sr & (1 << $symbolSize)) {                $sr ^= $gfPoly;            }            $sr &= $this->blockSize;        }        if (1 !== $sr) {            throw new RuntimeException('Field generator polynomial is not primitive');        }        // Form RS code generator polynomial from its roots        $this->generatorPoly = SplFixedArray::fromArray(array_fill(0, $numRoots + 1, 0), false);        $this->firstRoot = $firstRoot;        $this->primitive = $primitive;        $this->numRoots = $numRoots;        // Find prim-th root of 1, used in decoding        for ($iPrimitive = 1; ($iPrimitive % $primitive) !== 0; $iPrimitive += $this->blockSize) {        }        $this->iPrimitive = intdiv($iPrimitive, $primitive);        $this->generatorPoly[0] = 1;        for ($i = 0, $root = $firstRoot * $primitive; $i < $numRoots; ++$i, $root += $primitive) {            $this->generatorPoly[$i + 1] = 1;            for ($j = $i; $j > 0; $j--) {                if ($this->generatorPoly[$j] !== 0) {                    $this->generatorPoly[$j] = $this->generatorPoly[$j - 1] ^ $this->alphaTo[                        $this->modNn($this->indexOf[$this->generatorPoly[$j]] + $root)                    ];                } else {                    $this->generatorPoly[$j] = $this->generatorPoly[$j - 1];                }            }            $this->generatorPoly[$j] = $this->alphaTo[$this->modNn($this->indexOf[$this->generatorPoly[0]] + $root)];        }        // Convert generator poly to index form for quicker encoding        for ($i = 0; $i <= $numRoots; ++$i) {            $this->generatorPoly[$i] = $this->indexOf[$this->generatorPoly[$i]];        }    }    /**     * Encodes data and writes result back into parity array.     */    public function encode(SplFixedArray $data, SplFixedArray $parity) : void    {        for ($i = 0; $i < $this->numRoots; ++$i) {            $parity[$i] = 0;        }        $iterations = $this->blockSize - $this->numRoots - $this->padding;        for ($i = 0; $i < $iterations; ++$i) {            $feedback = $this->indexOf[$data[$i] ^ $parity[0]];            if ($feedback !== $this->blockSize) {                // Feedback term is non-zero                $feedback = $this->modNn($this->blockSize - $this->generatorPoly[$this->numRoots] + $feedback);                for ($j = 1; $j < $this->numRoots; ++$j) {                    $parity[$j] = $parity[$j] ^ $this->alphaTo[                        $this->modNn($feedback + $this->generatorPoly[$this->numRoots - $j])                    ];                }            }            for ($j = 0; $j < $this->numRoots - 1; ++$j) {                $parity[$j] = $parity[$j + 1];            }            if ($feedback !== $this->blockSize) {                $parity[$this->numRoots - 1] = $this->alphaTo[$this->modNn($feedback + $this->generatorPoly[0])];            } else {                $parity[$this->numRoots - 1] = 0;            }        }    }    /**     * Decodes received data.     */    public function decode(SplFixedArray $data, SplFixedArray $erasures = null) : ?int    {        // This speeds up the initialization a bit.        $numRootsPlusOne = SplFixedArray::fromArray(array_fill(0, $this->numRoots + 1, 0), false);        $numRoots = SplFixedArray::fromArray(array_fill(0, $this->numRoots, 0), false);        $lambda = clone $numRootsPlusOne;        $b = clone $numRootsPlusOne;        $t = clone $numRootsPlusOne;        $omega = clone $numRootsPlusOne;        $root = clone $numRoots;        $loc = clone $numRoots;        $numErasures = (null !== $erasures ? count($erasures) : 0);        // Form the Syndromes; i.e., evaluate data(x) at roots of g(x)        $syndromes = SplFixedArray::fromArray(array_fill(0, $this->numRoots, $data[0]), false);        for ($i = 1; $i < $this->blockSize - $this->padding; ++$i) {            for ($j = 0; $j < $this->numRoots; ++$j) {                if ($syndromes[$j] === 0) {                    $syndromes[$j] = $data[$i];                } else {                    $syndromes[$j] = $data[$i] ^ $this->alphaTo[                        $this->modNn($this->indexOf[$syndromes[$j]] + ($this->firstRoot + $j) * $this->primitive)                    ];                }            }        }        // Convert syndromes to index form, checking for nonzero conditions        $syndromeError = 0;        for ($i = 0; $i < $this->numRoots; ++$i) {            $syndromeError |= $syndromes[$i];            $syndromes[$i] = $this->indexOf[$syndromes[$i]];        }        if (! $syndromeError) {            // If syndrome is zero, data[] is a codeword and there are no errors to correct, so return data[]            // unmodified.            return 0;        }        $lambda[0] = 1;        if ($numErasures > 0) {            // Init lambda to be the erasure locator polynomial            $lambda[1] = $this->alphaTo[$this->modNn($this->primitive * ($this->blockSize - 1 - $erasures[0]))];            for ($i = 1; $i < $numErasures; ++$i) {                $u = $this->modNn($this->primitive * ($this->blockSize - 1 - $erasures[$i]));                for ($j = $i + 1; $j > 0; --$j) {                    $tmp = $this->indexOf[$lambda[$j - 1]];                    if ($tmp !== $this->blockSize) {                        $lambda[$j] = $lambda[$j] ^ $this->alphaTo[$this->modNn($u + $tmp)];                    }                }            }        }        for ($i = 0; $i <= $this->numRoots; ++$i) {            $b[$i] = $this->indexOf[$lambda[$i]];        }        // Begin Berlekamp-Massey algorithm to determine error+erasure locator polynomial        $r  = $numErasures;        $el = $numErasures;        while (++$r <= $this->numRoots) {            // Compute discrepancy at the r-th step in poly form            $discrepancyR = 0;            for ($i = 0; $i < $r; ++$i) {                if ($lambda[$i] !== 0 && $syndromes[$r - $i - 1] !== $this->blockSize) {                    $discrepancyR ^= $this->alphaTo[                        $this->modNn($this->indexOf[$lambda[$i]] + $syndromes[$r - $i - 1])                    ];                }            }            $discrepancyR = $this->indexOf[$discrepancyR];            if ($discrepancyR === $this->blockSize) {                $tmp = $b->toArray();                array_unshift($tmp, $this->blockSize);                array_pop($tmp);                $b = SplFixedArray::fromArray($tmp, false);                continue;            }            $t[0] = $lambda[0];            for ($i = 0; $i < $this->numRoots; ++$i) {                if ($b[$i] !== $this->blockSize) {                    $t[$i + 1] = $lambda[$i + 1] ^ $this->alphaTo[$this->modNn($discrepancyR + $b[$i])];                } else {                    $t[$i + 1] = $lambda[$i + 1];                }            }            if (2 * $el <= $r + $numErasures - 1) {                $el = $r + $numErasures - $el;                for ($i = 0; $i <= $this->numRoots; ++$i) {                    $b[$i] = (                        $lambda[$i] === 0                        ? $this->blockSize                        : $this->modNn($this->indexOf[$lambda[$i]] - $discrepancyR + $this->blockSize)                    );                }            } else {                $tmp = $b->toArray();                array_unshift($tmp, $this->blockSize);                array_pop($tmp);                $b = SplFixedArray::fromArray($tmp, false);            }            $lambda = clone $t;        }        // Convert lambda to index form and compute deg(lambda(x))        $degLambda = 0;        for ($i = 0; $i <= $this->numRoots; ++$i) {            $lambda[$i] = $this->indexOf[$lambda[$i]];            if ($lambda[$i] !== $this->blockSize) {                $degLambda = $i;            }        }        // Find roots of the error+erasure locator polynomial by Chien search.        $reg = clone $lambda;        $reg[0] = 0;        $count = 0;        $i = 1;        for ($k = $this->iPrimitive - 1; $i <= $this->blockSize; ++$i, $k = $this->modNn($k + $this->iPrimitive)) {            $q = 1;            for ($j = $degLambda; $j > 0; $j--) {                if ($reg[$j] !== $this->blockSize) {                    $reg[$j] = $this->modNn($reg[$j] + $j);                    $q ^= $this->alphaTo[$reg[$j]];                }            }            if ($q !== 0) {                // Not a root                continue;            }            // Store root (index-form) and error location number            $root[$count] = $i;            $loc[$count] = $k;            if (++$count === $degLambda) {                break;            }        }        if ($degLambda !== $count) {            // deg(lambda) unequal to number of roots: uncorrectable error detected            return null;        }        // Compute err+eras evaluate poly omega(x) = s(x)*lambda(x) (modulo x**numRoots). In index form. Also find        // deg(omega).        $degOmega = $degLambda - 1;        for ($i = 0; $i <= $degOmega; ++$i) {            $tmp = 0;            for ($j = $i; $j >= 0; --$j) {                if ($syndromes[$i - $j] !== $this->blockSize && $lambda[$j] !== $this->blockSize) {                    $tmp ^= $this->alphaTo[$this->modNn($syndromes[$i - $j] + $lambda[$j])];                }            }            $omega[$i] = $this->indexOf[$tmp];        }        // Compute error values in poly-form. num1 = omega(inv(X(l))), num2 = inv(X(l))**(firstRoot-1) and        // den = lambda_pr(inv(X(l))) all in poly form.        for ($j = $count - 1; $j >= 0; --$j) {            $num1 = 0;            for ($i = $degOmega; $i >= 0; $i--) {                if ($omega[$i] !== $this->blockSize) {                    $num1 ^= $this->alphaTo[$this->modNn($omega[$i] + $i * $root[$j])];                }            }            $num2 = $this->alphaTo[$this->modNn($root[$j] * ($this->firstRoot - 1) + $this->blockSize)];            $den  = 0;            // lambda[i+1] for i even is the formal derivativelambda_pr of lambda[i]            for ($i = min($degLambda, $this->numRoots - 1) & ~1; $i >= 0; $i -= 2) {                if ($lambda[$i + 1] !== $this->blockSize) {                    $den ^= $this->alphaTo[$this->modNn($lambda[$i + 1] + $i * $root[$j])];                }            }            // Apply error to data            if ($num1 !== 0 && $loc[$j] >= $this->padding) {                $data[$loc[$j] - $this->padding] = $data[$loc[$j] - $this->padding] ^ (                    $this->alphaTo[                        $this->modNn(                            $this->indexOf[$num1] + $this->indexOf[$num2] + $this->blockSize - $this->indexOf[$den]                        )                    ]                );            }        }        if (null !== $erasures) {            if (count($erasures) < $count) {                $erasures->setSize($count);            }            for ($i = 0; $i < $count; $i++) {                $erasures[$i] = $loc[$i];            }        }        return $count;    }    /**     * Computes $x % GF_SIZE, where GF_SIZE is 2**GF_BITS - 1, without a slow divide.     */    private function modNn(int $x) : int    {        while ($x >= $this->blockSize) {            $x -= $this->blockSize;            $x = ($x >> $this->symbolSize) + ($x & $this->blockSize);        }        return $x;    }}
 |